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Proof: The foregoing results show that ' = ®1 @ I satisfies (2), (¢7), (¥7).
Hence, by the proof of the first structure theorem, every ideal in &’ has a comple-
mentary ideal. In particular, 3’ = § @ B, where B is an idcal. Then § has
an identity element.

Axioms (#12) and (i) arc evidently satisfied if § is finite dimensional over &.
Also, it is quite easy to show in this case that (#7) is equivalent to the assumption
that & has no nil ideals. Therefore, our results give a new and improved deriva-
tion of Albert’s structure theorems for finite dimensional semisimple Jordan
algebras.
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1. We denote by Q@ the group of orientation-preserving Mébius transformations
in R? which leave B = {z/ lz] < 1} invariant. In other words, transformations in
Q are products of an even number of reflections in spheres orthogonal to the unit
sphere S = 9B.

Any discrete subgroup of Q is called a Kleinian group. Poincaré! has shown that
any such group @ is discontinuous in B. In its action on S it is discontinuous on an
open set D, which may be empty. The complement L = S — D is the set of limit
points. If Lis all of S, we say that G is of the first kind. If not, L is nowhere dense
on 8 and G is of the second kind. This terminology stresses the analogy with
Fuchsian groups.

2. The orbit space M = (BUD)/G is a connected orientable 3-manifold with
boundary. The latter can be identified with M, = D/G which need not be con-
nected, but whose components carry a structure of Riemann surface.

The immediate problem is to study the structure of M and M, as well as the
properties of D and L, particularly when @ is a finitely generated group. So far
only M, has been investigated with some degree of success.? It is hoped that a
systematic study of M will lead to more complete results, also as far as M and L
are concerned.

3. For the study of M it is advantageous to introduce the isometric funda-
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mental polyhedron, already considered by Poincaré. It is defined only when the
origin is not a fixpoint, but this is no serious restriction since we can always replace
G by a conjugate subgroup with this property.

The transformations in @ will be denoted x — Az. The linear ratio |dAz]:|dx] is
independent of the direction, and to stress the analogy with the plane case it will be
denoted by |A’ (x)[. We observe that IA’ (z)| = 1 on a sphere K, orthogonal to S,
namely, the noneuclidean plane whose points are equidistant from 0 and A4 —10.
Indeed, if A, denotes reflection in K ,, then AoA ! leaves 0 fixed and is hence an
isometry; it follows that [4’] = |4¢] = 1 on K,. Since |4y| > 1 inside and
|Ao’| < 1 outside of K,, the same reasoning shows that |A'(x)l > 1 inside and
[A’(x)l < 1 outside of K 4.

We call K, the tsometric sphere of A and its intersection with S the Zsometric
circle. The transformation A maps K, on K,-,, and this mapping is a euclidean
congruence. We point out that the isometric circles are defined by means of the
spherical derivative and are therefore not identical with the isometric circles of
Ford.?

DEFINITION. The tsometric polyhedron of G is the set P of all t&BU D such that
|A '(x)| < 1 for all AEQ except the identity.

In other words, P is the intersection of the outsides of the isometric spheres K ,,
AEG. These spheres accumulate only toward L, as seen from the fact that A—10
lies inside K4. Thus P can be described as a convex noneuclidean polyhedron such
that any compact set in B U D meets only a finite number of its sides and edges.

If K, contains a side of P, so does K -.. These sides are equivalent under the
mapping 4, and at the same time congruent in the euclidean and noneuclidean sense.

The intersection Py = PUD is a fundamental polygon for @ acting on D. Its
sides are circular arcs, but there is no convexity, and P; need not be connected.
The sides are congruent in pairs.

The manifold M = (BUD)/@ and its boundary M, = D/G can be constructed by
identifying corresponding sides, edges, and vertices of P and P,.

4. The situation becomes particularly simple if P has only a finite number of
sides. In that case, @ is finitely generated, namely, by the transformations that
map corresponding sides on each other. The hope of proving the converse has been
shattered by a counterexample due to L. Greenberg (unpublished).

In this paper we shall prove:

TurEorREM. If P has a finite number of sides, then either L is all of S, or the areal
measure of L is zero.

It is conceivable that mes L = 0 for all finitely generated groups, but we are
unable to prove or disprove this conjecture.

5. The proof makes decisive use of the hyperbolic metric ds = |dz|/(1 — |z]2).
We recall that the second Beltrami operator corresponding to this metric is given by

2r  du
Au = (1 — 7)%{ Au —
= ™) ( +l—-1*26r>’
where A is the ordinary Laplacian. A function which satisfies Ay = 0 may be
called hyperbolically harmonic. In contrast to ordinary harmonic functions in
space, a hyperbolically harmonic function remains such when composed with an
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AEQ. This explains the importance of this class for the problem under consider-
ation.
The Poisson formula for hyperbolically harmonic functions reads

u(z) = ff < Iml-:)2 u(y)do(y),

where do is the area element. For our purposes we choose u = Oon D, u = 1on L,

that is,
=3 [ (2w

If mes L # 0, 47, as we shall now assume, this function is not a constant. It
satisfies u(4x) = u(x) for all AEG.

6. Denote by P, the part of P in |x[ < r and by 6, the part on lxl =r. Thearea
of 8, will be denoted by r20(r) so that 8(r) is the solid angle subtended by 6, at the
origin.

Green’s formula yields

e = fff gt w1 = ff o T W

But u has equal and (du/dn) opposite values at equivalent boundary points.
Therefore, the formula reduces to

Vi) = ff 8r lrzdw )

where we have written dw for the element of solid angle.

We shall also set
m(r) = ff wdow. 3)
0r

From (1), (2), and (3) we obtain at once

V0P S T m@ V() < T V')

and hence

17 _ 1
fl " [0 L @)

m(r) rn V()2 — V()
Consider the equation

m(r) — 6(r) = ff u? — 1)do.
o

Since 8, shrinks with increasing r and 4?2 — 1 < 0, we may conclude that

m(r) — 0'(r) = 2 ‘[ f ug%‘ dw > 0.
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Hence, m(r) — 6(r) is increasing. If the integrand in (3) is written as xu? where x
is the characteristic function of 6,, it becomes clear that the integrand tends to 0
except on radii which end on the boundary of P, or at a finite number of cusps.
In view of the boundedness it follows that m(r) = 0 for r = 1. On the other hand,
6(r) decreases to 6(1), the area of P,.

We conclude that m(r) < 6(r) — 6(1). But for a finite polyhedron it is geo-
metrically evident that 8(r) — 6(1) = O((1 — r)?). This makes the integral

L
j:'o m(r) dr

divergent, contrary to (4). We have thus proved that the measure of L is either 0
or 4.
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! Poincaré, H., “Mémoire sur les groupes kleinéens,” Acta Math., 3 (1883).

2 Ahlfors, L., “Finitely generated Kleinian groups,” Am. J. Math., 86, No. 2 (1964 ), pp. 413-429.
2 Ford, L. R., Automorphic Functions (New York: Chelsea Publishing Co., 1951), 2nd ed.

INVESTIGATION ON GROUPS OF EVEN ORDER, IT*

By RicHARD BRAUER
HARVARD UNIVERSITY

Communicated December 1, 1965

1. Results on Groups G with a Given 2-Sylow Subgroup.—(a) If p is a prime and
P a given p-group, we can propose to study the finite groups G which possess P as
their p-Sylow subgroup. The theory of blocks of characters! can be applied. In I,
results concerning the irreducible characters of G were obtained. As was shown in
11, additional methods are available for p = 2. The nature of the results depends
strongly on the structure on P. At least for certain P, an amazing amount can be
said about G in the case p = 2. Elsewhere, the cases of quaternion
dihedral, quasidihedral P have been investigated and at least partial results have
been obtained for abelian P. In this section, we shall report on some further
results of this nature.

(b) The problem of characterizing the projective groups of Desarguesian planes
of order g for ¢ =1 (mod 4) requires the investigation of groups P with generators
o1, 02, 7 defined by the relations

om

m —_
a? = 0t =1, 2 =1; 102 = 0207, 77 lo1r = oo,

Here, m is an integer; m = 2. Thus, P has order 2?" + !, and P is the wreath
product of a cyeclic group of order 2™ by a group of order 2. We use the following
notation,

m =1 m =1 —
J) = 012 y Jg = 622 y J = J1J2, a = 0109, B = 0102 l, S = (0’1,0’2>.



